Exam: Ch 14 – 17 Name: AP Chem (80 pts) I have not given, received, nor will give any aid on this		this exam.	
Version M	Period: 1 2 3 4	3/20/06	
MC: (/ 4)(3 pts each) =	FR: (out of 41)	Overall:

SECTION I: Multiple Choice (39 pts, 3 pts each): Choose the option that is the best answer or completes each question or statement. Write your answers in the blanks provided and erase mistakes completely. In this section, as a correction for haphazard guessing, one-fourth of the number of questions you answer incorrectly will be subtracted from the number of questions you answer correctly.

 $4 \text{ NH}_3 + 7 \text{ O}_2 \rightarrow 4 \text{ NO}_2 + 6 \text{ H}_2\text{O}$

1. Which of the following is NOT a valid expression for the rate of the reaction below?

	$1 \Delta[O_2]$
А.	$\overline{7} \Delta t$
_	$1 \Delta [NO_2]$
В.	4 Δt
	$1 \Delta [H_2 O]$
C.	6 Δt
	$1 \Delta [NH_3]$
D.	$-\frac{1}{4}\Delta t$

- E. Not enough information given or none of the above
- 2. A possible mechanism for the following reaction is listed below:

	$Br_{2}(g) + 2 NO$	$(g) \rightarrow 2 \text{ NOBr } (g)$
NO (g) + Br ₂ (g) \rightarrow NO	$Br_{2}(g)$	(fast)
$\text{NOBr}_2(g) + \text{NO} \rightarrow \text{N}_2 G$	O_2Br_2	(slow)
$N_2O_2Br_2 \rightarrow 2 \text{ NOBr}$		(fast)

The rate law based on this mechanism is:

A.	Rate = k	[NO]	$[Br_2]$

- B. Rate = $k [NO]^2 [Br_2]$
- C. Rate = k $[NO] [Br_2]^2$
- D. Rate = $k [NO]^2 [Br_2] [NOBr_2]$
- E. Not enough information given or none of the above
- 3. Which of the following descriptions of graphs would show the correct relationship between concentration and time for a reaction that is second order?
 - A. ln [A] vs. time
 - B. [A] vs. time
 - C. 1/[A] vs. time
 - D. $[A]^2$ vs. time
 - E. Not enough information given or none of the above
- 4. The relationship between the rate constants for the forward and reverse reactions and the equilibrium constant for the process is $K_{eq} =$
 - A. $k_f x k_r$
 - B. $k_f k_r$
 - C. $k_f + k_r$
 - D. k_f / k_r
 - E. Not enough information given or none of the above

Ans:

Ans: _____

Ans: ____

Ans:

- 5. Which of the following condition changes will affect the value of the equilibrium constant, K_{eq} ?
 - I. Temperature
 - II. Volume
 - III. Addition of a catalyst
 - A. I only
 - B. III only
 - C. I and III
 - D. II and III
 - E. Not enough information given or none of the above
- 6. The equilibrium constant expression, K_C, for the thermal decomposition of solid calcium carbonate is:

A.
$$\frac{[CaCO_3]}{[CaO][CO_2]}$$

B.
$$\frac{[CaO][CO_2]}{[CaCO_3]}$$

C.
$$\frac{1}{[CO_2]}$$

D.
$$[CO_2]$$

- 7. Which of the following is the weakest acid?
 - A. HNO₂ ($K_a = 4.5 \times 10^{-4}$)
 - B. HCN $(K_a = 4.9 \times 10^{-5})$
 - C. HF ($K_a = 6.8 \times 10^{-4}$)
 - D. HClO ($K_a = 3.0 \times 10^{-8}$)

E. Not enough information given or none of the above

- 8. B is a weak base. Which equilibrium corresponds to the equilibrium constant K_a for HB⁺?
 - A. $HB^+(aq) + H_2O(l) \leftrightarrow B(aq) + H_3O^+(aq)$
 - B. $HB^+(aq) + H_3O^+(aq) \leftrightarrow H_2B^{2+}(aq) + H_2O(l)$
 - C. $B(aq) + H_2O(l) \leftrightarrow HB^+(aq) + OH^-(aq)$
 - D. $HB^+(aq) + OH^-(aq) \leftrightarrow B(aq) + H_2O(l)$
 - E. Not enough information given or none of the above
- 9. Of the following, which is the strongest acid?
 - A. HClO
 - B. HClO₂
 - C. HBrO
 - D. HBrO₂
 - E. Not enough information given or none of the above
- 10. Which of the following CANNOT act as a Lewis base?
 - A. Cl⁻
 - B. NH₃
 - C. BF₃
 - D. H₂O

E. Not enough information given or none of the above An

Ans: _____

Ans: _____

Ans: ____

Ans: _____

Ans:

Ans: _____

3

- 11. Which of the following could be added to a solution of sodium acetate to produce a usable buffer? I. Acetic acid
 - II. Hydrochloric acid
 - III. Silver acetate
 - A. I only
 - B. II only
 - C. II and III
 - D. I, II, and III
 - E. Not enough information given or none of the above
- 12. Which of the following is true about the equivalence point of the titration of a weak acid with a strong base?
 - A. The moles of weak acid and the moles of the weak acid's conjugate base are identical.
 - B. The pH = 7.
 - C. The source of the concentration of weak acid is based only on the resulting hydrolysis reaction.
 - D. The solution will mostly consist of the weak acid.
 - E. Not enough information given or none of the above Ans: ____
- 13. In which aqueous system is PbI₂ least soluble?
 - A. H₂O
 - B. 0.5 M HI
 - C. 0.8 M KI
 - D. 1.0 M HNO₃
 - E. Not enough information given or none of the above

SECTION II: Free Response (41 pts)

14. (20 pts) For the following reaction, the rate constant, k, at 25°C is 0.63 M⁻¹ min⁻¹. $2 \operatorname{NO}_2(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$

a. (6 pts) What is the rate law for the reaction? Briefly explain how you know in 1-2 sentences.

Rate =

b. (6 pts) If the initial concentration of NO_2 is 0.100 M, how long would it take for the concentration to decrease to 0.025 M?

Time =

 $E_A =$

c. (8 pts) If the rate constant doubles when the temperature increases by 10°C, what is the activation energy of the reaction?

Ans: ____

Ans: ____

- 15. (21 pts) Consider the titration of 30.0 mL of 0.500 M nitrous acid ($K_a = 4.5 \times 10^{-4}$) with 0.500 M KOH.
 - a. (4 pts) Write a chemical equation showing how nitrous acid behaves as an acid in water.
 - b. (6 pts) Calculate the initial pH of the nitrous acid solution.

pH =

- c. (6 pts) After 20.0 mL of titrant have been added,
 - i. Calculate $[H_3O^+]$ in the flask after the titrant has been added.

 $[H_{3}O^{+}] =$

ii. Calculate the pH in the flask after the titrant has been added.

pH =

d. (5 pts) After 40.0 mL of titrant have been added, calculate the pOH in the flask.

pOH =

Exam: Ch 14 – 17 AP Chem (80 pts)	Name: I have not given, received, nor will give any aid on this exam.		this exam.
Version N	Period: 1 2 3 4	3/20/06	
MC: (/ 4)(3 pts each) =	FR: (out of 41)	Overall:

SECTION I: Multiple Choice (39 pts, 3 pts each): Choose the option that is the best answer or completes each question or statement. Write your answers in the blanks provided and erase mistakes completely. In this section, as a correction for haphazard guessing, one-fourth of the number of questions you answer incorrectly will be subtracted from the number of questions you answer correctly.

 $4 \text{ NO}_2 + 6 \text{ H}_2\text{O} \rightarrow 4 \text{ NH}_3 + 7 \text{ O}_2$

1. Which of the following is NOT a valid expression for the rate of the reaction below?

A.
$$\frac{1}{7} \frac{\Delta[O_2]}{\Delta t}$$

B.
$$-\frac{1}{4} \frac{\Delta[NH_3]}{\Delta t}$$

C.
$$-\frac{1}{4} \frac{\Delta[NO_2]}{\Delta t}$$

D.
$$-\frac{1}{6} \frac{\Delta[H_2O]}{\Delta t}$$

- E. Not enough information given or none of the above
- 2. A possible mechanism for the following reaction is listed below:

	$Br_{2}(g) + 2 NO$	$(g) \rightarrow 2 \text{ NOBr } (g)$
NO (g) + Br ₂ (g) \rightarrow NO	$Br_2(g)$	(slow)
$\text{NOBr}_2(g) + \text{NO} \rightarrow \text{N}_2 G$	O_2Br_2	(fast)
$N_2O_2Br_2 \rightarrow 2 \text{ NOBr}$		(fast)

The rate law based on this mechanism is:

A.	Rate =	k [NO]	$[Br_2]$

- B. Rate = $k [NO]^2 [Br_2]$
- C. Rate = k $[NO] [Br_2]^2$
- D. Rate = k [NO] [Br₂] [NOBr₂]
- E. Not enough information given or none of the above
- 3. Which of the following descriptions of graphs would show the correct relationship between concentration and time for a reaction that is zero order?
 - E. 1 / [A] vs. time
 - F. $[A]^2$ vs. time
 - G. ln [A] vs. time
 - H. [A] vs. time
 - E. Not enough information given or none of the above
- 4. Once equilibrium has been achieved for the reaction $A \rightarrow B$, which of the following is NOT true?
 - E. $k_f / k_r = constant$
 - F. Forward rate of reaction = reverse rate of reaction
 - G. Forward rate constant = reverse rate constant
 - H. $k_f[A] / k_r[B] = constant$
 - E. Not enough information given or all of the above are true

Ans: ____

Ans: _____

Ans: _____

Ans: _____

6

- 5. Which of the following condition changes will NOT affect the value of the equilibrium constant, K_{eq}, of a reaction that includes gases?
 - IV. Increase in temperature
 - V. Decrease in volume
 - VI. Addition of a catalyst
 - E. II only
 - F. III only
 - G. I and II
 - H. II and III
 - E. Not enough information given or none of the above
- 6. The equilibrium constant expression, K_C, for the decomposition of aqueous carbonic acid is:
- A. $\frac{[H_2O][CO_2]}{[H_2CO_3]}$ B. $\frac{[CO_2]}{[H_2CO_3]}$ C. $\frac{[H_2CO_3]}{[H_2O][CO_2]}$ D. [*CO*,] E. None of the above Ans: _____ 7. Which of the following is the strongest acid? A. HF ($K_a = 6.8 \times 10^{-4}$) B. HClO ($K_a = 3.0 \times 10^{-8}$) C. HNO₂ ($K_a = 4.5 \times 10^{-4}$) D. HCN $(K_a = 4.9 \times 10^{-5})$ E. Not enough information given or none of the above Ans: _____ 8. B is a weak base. Which equilibrium corresponds to the equilibrium constant K_b ? F. $HB^+(aq) + H_2O(1) \leftrightarrow B(aq) + H_3O^+(aq)$ G. $HB^+(aq) + H_3O^+(aq) \leftrightarrow H_2B^{2+}(aq) + H_2O(1)$ H. B (aq) + H₂O (l) \leftrightarrow HB⁺ (aq) + OH⁻ (aq) I. $HB^+(aq) + OH^-(aq) \leftrightarrow B(aq) + H_2O(l)$ J. Not enough information given or none of the above Ans: _____ 9. Of the following, which is the weakest acid? F. HIO G. HIO₂ H. HClO I. HClO₂ Ans: _____ J. Not enough information given or none of the above 10. Which of the following is most likely to as a Lewis acid? E. BeF₂ F. H₂O G. Cl⁻ H. NH₃ E. Not enough information given or none of the above Ans:
- ous carbonic ac

Ans: _____

7

- 11. Which of the following could be added to a solution of ammonium chloride to produce a usable buffer? I. Aqueous ammonia
 - II. Hydrochloric acid
 - III. Ammonium acetate
 - F. I only
 - G. II only
 - H. I and III
 - I. I. II. and III
 - J. Not enough information given or none of the above
- 12. Which of the following is true about the equivalence point of the titration of a weak base with a strong acid?
 - F. The moles of weak base and the moles of the weak base's conjugate acid are identical.
 - G. The pH > 7.
 - H. The concentration of weak base will be zero.
 - I. The weak base's conjugate acid will hydrolyze to produce H^+ .
 - J. Not enough information given or none of the above
- 13. In which aqueous system is PbI_2 least soluble?
 - F. H₂O
 - G. 0.5 M HI
 - H. 0.8 M KI
 - I. 1.0 M AgI
 - J. Not enough information given or none of the above

SECTION II: Free Response (41 pts)

14. (20 pts) For the following reaction, the rate constant, k, at 25°C is 0.23 min⁻¹. $2 \operatorname{NO}_2(g) \rightarrow 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$

- e. (6 pts) What is the rate law for the reaction? Briefly explain how you know in 1-2 sentences.
- f. (6 pts) If the initial concentration of NO_2 is 0.200 M, how long would it take for the concentration to decrease to 0.050 M?

Time =

g. (8 pts) If the rate constant triples when the temperature increases by 20°C, what is the activation energy of the reaction?

Ans: ____

Ans: ____

Ans: ____

 $E_A =$

Rate =

- 15. (21 pts) Consider the titration of 40.0 mL of 0.300 M nitrous acid ($K_a = 4.5 \times 10^{-4}$) with 0.300 M KOH.
 - h. (4 pts) Write a chemical equation showing how nitrous acid behaves as an acid in water.
 - i. (6 pts) Calculate the initial pH of the nitrous acid solution.

pH =

- j. (6 pts) After 25.0 mL of titrant have been added,
 - i. Calculate $[H_3O^+]$ in the flask after the titrant has been added.

 $[H_{3}O^{+}] =$

ii. Calculate the pH in the flask after the titrant has been added.

pH =

k. (5 pts) After 50.0 mL of titrant have been added, calculate the pOH in the flask.