Quiz: Ch 19-20	Name:	
Version M (32 pts)	I have not received o	r given, nor will give any aid on this exam.
AP Chemistry	April 7, 2006	Period: 1 2 3 4

Show your work for all problems and include sensible units. No work (i.e., no reasonable justification) = no credit.

1. (20 pts) Consider the following balanced reaction, which occurs at 25°C:

 $2 \operatorname{Al}(s) + 3 \operatorname{Cl}_2(g) \leftrightarrow 2 \operatorname{AlCl}_3(s)$

S° (J/K·mol): Al (s) = 28 $Cl_2(g) = 223$ AlCl₃(s) = 111

a. (5 pts) Calculate ΔS° for this reaction.

 $\Delta S^{\circ} =$

b. (5 pts) Calculate E°_{cell} for this reaction.

c. (5 pts) Calculate ΔG° for this reaction.

 $\Delta G^{\circ} =$

 $E_{\text{cell}}^{\circ} =$

d. (7 pts) Calculate $\Delta H^{\circ}_{formation}$ of AlCl₃ (s).

e. (5 pts) If the reaction is reversed when connected to a 9-V battery, which produces a current of 50.0 A for 3.0 minutes, how many moles of Al (s) would be produced?

moles Al =

f. (5 pts) If ΔG of the reaction is -1450 kJ/mol, then what is the value of the ion-product constant, Q?

Q =

Quiz: Ch 19-20	Name:	
Version N (32 pts)	I have not received or given	, nor will give any aid on this exam.
AP Chemistry	April 7, 2006	Period: 1 2 3 4

Show your work for all problems and include sensible units. No work (i.e., no reasonable justification) = no credit.

1. (20 pts) Consider the following balanced reaction, which occurs at 25°C:

 $2 \operatorname{Cr}(s) + 3 \operatorname{I}_2(s) \leftrightarrow 2 \operatorname{CrI}_3(s)$

S° (J/K·mol): Cr(s) = 24 $I_2(s) = 116$ $CrI_3(s) = 102$

a. (5 pts) Calculate E°_{cell} for this reaction.

 $E_{\text{cell}}^{\circ} =$

 $\Delta G^{\circ} =$

 $\Delta S^{\circ} =$

b. (5 pts) Calculate ΔG° for this reaction.

c. (5 pts) Calculate ΔS° for this reaction.

d. (7 pts) Calculate $\Delta H^{\circ}_{\text{formation}}$ of CrI₃ (s).

e. (5 pts) If the reaction is reversed when connected to a 9-V battery, which produces a current of 40.0 A for 6.0 minutes, how many moles of I_2 (s) would be produced?

moles Al =

f. (5 pts) If ΔG of the reaction is -750 kJ/mol, then what is the value of the ion-product constant, Q?

Q =

Quiz: Ch 19-20	Name:	
Version O (32 pts)	I have not received o	or given, nor will give any aid on this exam.
AP Chemistry	April 7, 2006	Period: 1 2 3 4

Show your work for all problems and include sensible units. No work (i.e., no reasonable justification) = no credit.

1. (20 pts) Consider the following balanced reaction, which occurs at 25°C:

 $2 \operatorname{Hg}(l) + \operatorname{CaCl}_2(s) \leftrightarrow \operatorname{Hg}_2\operatorname{Cl}_2(s) + \operatorname{Ca}(s)$

S° (J/K·mol):	Hg (l) = 77.4	$CaCl_2(s) = 104.6$
	Ca(s) = 41.4	$Hg_2Cl_2(s) = 192.5$

 ΔH_{f}^{o} (kJ/mol): CaCl₂ (s) = -795.8

a. (5 pts) Calculate E°_{cell} for this reaction.

b. (5 pts) Calculate ΔG° for this reaction.

- c. (5 pts) Calculate ΔS° for this reaction.

d. (7 pts) Calculate $\Delta H^{\circ}_{\text{formation}}$ of Hg₂Cl₂ (s).

 $\Delta H_{f}^{\circ} =$

 $E_{\text{cell}}^{\circ} =$

 $\Delta G^{\circ} =$

 $\Delta S^{\circ} =$

5

e. (5 pts) If ΔG of the reaction is -600.0 kJ/mol at 30.0 °C, then what is the value of the ion-product constant, Q?

Q =

f. (5 pts) If the reaction is reversed when connected to a 9-V battery, what current, applied for 2.00 minutes, will produce 0.240 moles of Hg (1)?

Current =