Quiz: Ch 19 & 20	Name:			
Thermodynamics & Electrochemistry	Date:	Pd:	6	7
Version C (make-up)				

Show your work for all questions; answer all parts of all questions. No work = no credit.

- 1. (2 pts) What's "free" about the Gibb's free energy?
- 2. (3 pts) Distinguish among the rotational, translational, and vibrational motion of a molecule. Use CO₂ as an example, if you'd like one.

3. Given the following table of standard thermodynamic data:

Compound	∆H° _f kJ/mol	∆S° _f kJ/mol	∆G° _f J/(mol K)	
$XeF_{2}(g)$	-108	-48	254	
$XeF_4(g)$	-251	-121	146	

Consider the change: $XeF_2(s) + F_2(g) \rightarrow XeF_4(g)$ at 298K and 1 atm. a. (4 pts) What are the values of ΔS° and ΔH° for this conversion?

b. (3 pts) Perform a calculation to show whether it is thermodynamically feasible (practical) for this reaction to occur at 100°C and 1 atm. Then explain how you know if it is feasible or not.

c. (3 pts) For the reaction, calculate the equilibrium constant K_{eq} at 100°C.

4. A voltaic cell is constructed that consists of a 200.0 g zinc metal electrode in a solution of 0.10 M Zn(NO₃)₂, connected by a wire and a salt bridge to a 200.0 g copper metal electrode in a 2.50 M solution of Cu(NO₃)₂.

Write the balanced half reaction that would occur at the: a. (2 pts) Cathode

- b. (2 pts) Anode
- c. (3 pts) Write the overall, balanced cell reaction and calculate E^o_{cell}.

d. (4 pts) Calculate E_{cell} after this voltaic cell has produced a 10.0 A current for 10.0 hours. (Assume each half-cell contains 1.00 L of solution.)

e. (4 pts) Calculate the mass of the zinc electrode after 10.0 hours.