Quiz: Ch 14 & 15	Name:	
Version M (32 pts)	I have not received or given, nor w	vill give any aid on this exam.
AP Chemistry	February 10, 2006	Period: 1 2 3 4

Show your work for all problems and be sure to box your final answer and include sensible units. No work (i.e., no reasonable justification) = no credit.

1. (18 pts) Consider the following balanced reaction: BrO₃¹⁻ (aq) + 5 Br¹⁻ (aq) + 6 H⁺ (aq) \rightarrow 3 Br₂ (l) + 3 H₂O (l)

The following data were collected at 35.0°C:

Initial [BrO ₃ ¹⁻ (aq)]	Initial [Br ¹⁻]	Initial [H ⁺]	Measured initial rate
(mol/L)	(mol/L)	(mol/L)	$(\text{mol}\cdot\text{L}^{-1}\cdot\text{s}^{-1})$
0.10	0.10	0.10	8.00 x 10 ⁻³
0.20	0.10	0.10	1.60 x 10 ⁻²
0.20	0.20	0.20	1.28 x 10 ⁻¹

a. (8 pts) Determine the rate law for this reaction (include the value of k and units).

Rate =

b. (2 pts) What is the overall order of the above reaction?

c. (3 pts) Considering the order of reaction you have determined for bromide, a graph of

vs. time would yield a useful straight-line relationship.

d. (5 pts) What is the activation energy of this reaction if the rate constant at 50.0°C is 150?

2. (14 pts) At 200.0 K, $K_C = 9.27 \times 10^{-4}$ for this balanced, endothermic reaction:

2 NaHCO₃ (s) \leftrightarrow Na₂CO₃ (s) + CO₂ (g) + H₂O (g)

a. (2 pts) Write the equilibrium constant expression, K_C , for this reaction:

 $K_C =$

b. (4 pts) 10.0 g of sodium bicarbonate is added to a 2.0-L container, which is then evacuated and heated to 200.0 K. Calculate the equilibrium partial pressure of $CO_2(g)$ after equilibrium is established.

 $P_{CO2} =$

- c. (4 pts) Explain how the value of K_C will change (*increase, decrease*, or *no change*) if the following stresses are applied; <u>then</u> briefly explain why:
 - i. The temperature is decreased.

ii. The volume of the container is changed to 1.0-L.

Quiz: Ch 14 & 15	Name:	
Version N (32 pts)	I have not received or given, nor w	vill give any aid on this exam.
AP Chemistry	February 10, 2006	Period: 1 2 3 4

Show your work for all problems and be sure to box your final answer and include sensible units. No work (i.e., no reasonable justification) = no credit.

3. (18 pts) Consider the following balanced reaction: BrO₃¹⁻ (aq) + 5 Br¹⁻ (aq) + 6 H⁺ (aq) \rightarrow 3 Br₂ (l) + 3 H₂O (l)

The following data were collected at 15.0°C:

Initial [BrO ₃ ¹⁻ (aq)]	Initial [Br ¹⁻]	Initial [H ⁺]	Measured initial rate
(mol/L)	(mol/L)	(mol/L)	$(\text{mol}\cdot\text{L}^{-1}\cdot\text{s}^{-1})$
0.050	0.050	0.050	6.00 x 10 ⁻⁴
0.050	0.050	0.10	1.20 x 10 ⁻³
0.10	0.10	0.10	1.92 x 10 ⁻²

e. (8 pts) Determine the rate law for this reaction (include the value of k and units).

Rate =

f. (2 pts) What is the overall order of the above reaction?

g. (3 pts) Considering the order of reaction you have determined for bromide, a graph of

vs. time would yield a useful straight-line relationship.

h. (5 pts) What is the activation energy of this reaction if the rate constant at 40.0°C is 2.5×10^3 ?

4. (14 pts) At 300.0 K, $K_C = 1.08 \times 10^3$ for this balanced, exothermic reaction:

 $Na_2CO_3(s) + CO_2(g) + H_2O(g) \leftrightarrow 2 NaHCO_3(s)$

a. (2 pts) Write the equilibrium constant expression, K_C, for this reaction:

 $K_C =$

b. (4 pts) 10.0 g of sodium bicarbonate is added to a 2.0-L container, which is then evacuated and heated to 300.0 K. Calculate the equilibrium partial pressure of $H_2O(g)$ after equilibrium is established.

 $P_{\rm H2O}\!=\!$

- c. (4 pts) Explain how the value of K_C will change (*increase, decrease*, or *no change*) if the following stresses are applied; <u>then</u> briefly explain why:
 - i. The temperature is increased.

ii. Sodium carbonate is added to the container.